

H2 CHEMISTRY

Notes by Zhuoyi | Consolidated & Updated by Kevin

CONTENTS	PAGES
PERIODICITY	2
Organic Chemistry Mechanisms	6
BIOCHEMISTRY SUMMARY	8
Physical & Chemical Properties	10
HALOGENS CHEAT SHEET	13
DEFINITIONS	14
THINGS TO NOTE	16

H2 Chemistry | Consolidated Notes

CHEMICAL PERIODICITY

 $Z_{eff} = Z - \sigma$

PHYSICAL PROPERTIES

Z_{eff} increases across a period. The number of protons, and thus <u>Z</u> , increases, while <u>o</u> remains approximately constant as the number of fully filled inner principle quantum shells remain the same Z_{eff} decreases descending a group. The number of protons, and thus <u>Z</u> , increases, while <u>o</u> increases as the number of fully filled inner principle quantum shells increases					
shells remain the same Z _{eff} <u>decreases</u> descending a group. The number of protons, and thus <u>Z, increases</u> , while <u>o</u>					
Z_{eff} decreases descending a group. The number of protons, and thus Z, increases, while σ					
increases as the number of fully filled inner principle quantum shells increases					
The 7 increases from Na to Al as the sation has one loss shall of electrons. Consequently					
The $\underline{Z_{eff}}$ increases from Na to Al as the cation has <u>one less shell of electrons</u> , Consequently,					
the <u>nucleus exerts a greater attractive force</u> on the valence electrons in the cation.					
Both the anion and its parent atom have the <u>same number of protons</u> , making Z identical.					
The <u>anion</u> however, <u>has more electrons</u> that its parent atom, making the <u>nucleus attract</u>					
the valence electron less strongly in the anion					
σ remains constant as the have the same number of inner electrons. <u>Z increases</u> , and thus					
the nucleus attracts the valence electrons more strongly					
mation about ionization energy, refer to the atomic structure cheatsheet					
$Z_{ m eff}$ decreases descending a group. Z increases descending a group while σ increases as					
well, but <u>more significantly</u>					
Electrons are removed from an ions with increasing positive charges, increasing the Z _{eff}					
and attracting electrons more strongly to the nucleus					
Z_{eff} increases across a period. Z increases while σ remains approximately constant. The					
ability of an atom in a molecule to attract bonding electrons thus increases.					
Z _{eff} <u>decreases</u> across a period. While <u>Z increases</u> , <u>σ increases more significantly</u> . Thus, the					
ability of an atom in a molecule to attract bonding electrons decreases.					
t E T t c t r Z z z z z z z					

Period 2	Li Be	В	C*	N	0	F	Ne	
Period 3	Na Mg Al		Si	Р	S	Cl	Ar	
Туре	Metal	Meta	lloid	Nonmetal				
Structure	Metallic	Giant Mo	olecular		Simple N	1olecular		
Bonding	onding Depends on no. of valence e Strong covalent bonds Na < Mg < Al		lent bonds		Weak VD epends on $P_4 < S_8 >$	the size of		
mp/bp	/bp High Very High		High		Lo	w		
Electrical conductivity	Good conductors Depends on no. of valence e ⁻ – Na < Mg < Al	Poor con *Graphite is a s conductor: mol	lightly better	Insulators No mobile valence e		-		

H2 Chemistry | Consolidated Notes

CHEMICAL PROPERTIES

			Reaction with dry oxygen and heat	Reaction with dry chlorine and heat	Reaction with water	pH in water
Gp I	reducing	Na	4Na + O₂ → 2Na₂O Vigorous	2Na + Cl ₂ → 2NaCl Very vigorous	2Na + 2H ₂ O → 2NaOH + H ₂ Violent reaction with cold water	13
Gp II	Strongly reducing	Mg	2Mg + O₂ → 2MgO Very vigorous	Mg + Cl₂ → MgCl₂ Vigorous	Mg + H ₂ O \rightarrow MgO + H ₂ Vigorous reaction with steam	9
Gp III		AI	4AI + 2O ₂ → 2AI ₂ O ₃ Vigorous initially	2AI + 3CI ₂ → 3AICI ₃ Vigorous AICI ₃ may dimerize	2Al + $3H_2O \rightarrow Al_2O_3 + 3H_2$ Vigorous reaction with steam	7
Gp IV	cing Weakly sing	Si	Si + $O_2 \rightarrow SiO_2$ Slow	Si + 2Cl ₂ \rightarrow SiCl ₄ Slow	No reaction	7
Gp V	Weakly reducing Weakly oxidising	Ρ	$P_4 + 3O_2 \rightarrow P_4O_6$ $P_4O_6 + 2O_2 \rightarrow P_4O_{10}$ Vigorous	$P_4 + 6Cl_2 \rightarrow 4PCl_3$ $PCl_3 + Cl_2 \rightarrow PCl_5$ $Slow$	No reaction	7
Gp VI		S	$S + O_2 \rightarrow SO_2$ $2SO_2 + O_2 \rightarrow 2SO_3$ Slow	$S_8 + 4Cl_2 \rightarrow 4S_2Cl_2$ $S_2Cl_2 + Cl_2 \rightarrow 2SCl_2$ Slow	No reaction	7
Gp VII	Strongly oxidising	CI	$2Cl_2 + 7O_2 \rightarrow 2Cl_2O_7$ Slow		$Cl_2 + H_2O$ \Box HOCI + HCI Acidic solution formed	2

H2 Chemistry | Consolidated Notes

OXIDES + PROPERTIES

Oxide	Na	20	M	gO	AI	2O3	SiO ₂	P ₄ P ₄	-		0 ₂ 0 ₃	Cl ₂ O (Cl	0 ₂) Cl ₂ O ₇
Oxidation number	+	1	+	2	+	·3	+4	+3,	+5	+4	, +6	+1, +	4. +7
Oxidation number							sitive: Oxygen is more elect	1					
	1	1		2		3	4	5			6	-	
No. of valence e	Oxidation number equa			al number of	valence e		Multiple o			nave unoccupi o expand their		3d orbitals	
Bonding			loi	nic					Cova	alent			
Structure			Giant ion	ic lattices			Giant covalent			Simple n	nolecular		
State at 20°C		High bp du	ie to large am		olid av required to	break ionic bo	onds in the	Gas,	<u>solid</u>	Gas,	liquid	Gas, (liqu	id) liquid
		0 1	•	Mg, Al) or gia						Weak VD	DW forces		
Molten electrical			Go	od			Very poor			No con	ductivity		
conductivity		Mot	oile ions prese	nt in molten s	state		No charged particles		1	No mobile ion	is in liquid stat	te	
Solubility in water	Solu	uble	Sparingly	y soluble		Incol	lublo	F	React with w	ater to form	n strongly ac	ly acidic solutions	
	1 Strongly		Weakly) alkaline	La	Insoluble Lattice energy highly exothermic		2 Strongly acidic					
pH of solution			Please don't memorize these equations. Remember: oxidation states don't change on either side. Write the reactants product, and then balance all non-O and non-H elements and finally balance with water.		$P_4O_6(g) + 0$ $4H_3PO(g) + 0$ $P_4O_{10}(g) + 0$ $4H_3PO(g) + 0$	D ₃ (aq) 6H₂O(I) →	H ₂ SC SO ₃ (I) +	H ₂ O(I) → D ₃ (aq) H ₂ O(I) → D ₄ (aq)	Cl ₂ O(g) + 2HCl Cl ₂ O ₇ (I) + 2HClC	D(aq) H₂O(l) →			
	Hyd	Ba roxides are	sic; strongly alka	lline	Amph	oteric			Aci	dic			
Oxide &hydroxide acid-base behaviour	Na₂O(s) + 2HCl(aq) → 2NaCl(aq) + H₂O(l)	NaOH(aq) + HCl(aq) → NaCl(aq) + H₂O	MgO(s) + 2HCl(aq) → 2MgCl ₂ (aq) + H ₂ O(l)	Mg(OH) ₂ (aq) + 2HNO ₃ (aq) → Mg(NO ₃) ₂ (aq) + 2H ₂ O(l)	Al ₂ O ₃ (s) + 6HCl(aq) → AlCl ₃ (aq) + 3H ₂ O(l)	Al ₂ O ₃ (s) + 2NaOH(aq) + 3H ₂ O → 2Na ⁺ [Al(OH)₄] (aq)	SiO ₂ (s) + 2NaOH(aq) → Na₂SiO₃(aq) + H₂O(l)	P₄O ₆ (g) + 12NaOH(aq) → 4Na₃PO₃(aq) + 6H₂O(l)	P₄O₁₀(g) + 12NaOH(aq) → 4Na₃PO₄(aq) + 6H₂O(l)	SO ₂ (g) + 2NaOH (aq) → Na₂SO ₃ (aq) + H₂O(l)	SO₃(I) + 2NaOH (aq) → Na₂SO₄(aq) + H₂O(I)	Cl₂O(g) + 2NaOH(aq) → 2NaClO(aq) + H₂O(l)	Cl₂O ₇ (g) + 2NaOH(aq) → 2NaClO ₄ (aq) + H ₂ O(l)

H2 Chemistry | Consolidated Notes

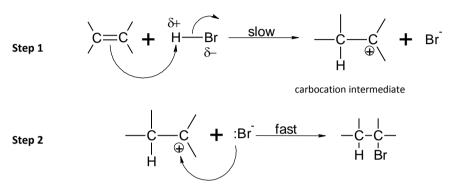
CHLORIDES + PROPERTIES

Oxide	NaCl	MgCl ₂	AICI ₃	SiCl ₄	PC PC	-	SCl ₂ S ₂ Cl ₂
	+1	+2	+3	+4		+5	+1, +2
Oxidation number			Always positive: Chlorine	is more electronegative			
		Oxidation number equ	al number of valence e		Atoms have unoccupied, Does not for low-lying 3d orbitals steric		
Structure	Giant ion	ic lattice	Simple molecular Comparable e-negativities of Al and Cl		Simple m	nolecular	
State at 20°C	Na, Mg: Large a	Solid mount of energy required to bi	reak ionic bonds	Liquid	Liquid Weak VD	-	Liquid, gas
Molten electrical conductivity	Go Mobile ions prese	od	Very poor Conducts electricity in aqueous solution	No conductivity No mobile ions in liquid state			
Solubility in water	Disso	olves		Dissolves to evolve HCl fumes			
рН	7	6.5 Slightly acidic	3 Strongly acidic	2 Strongly acidic			
Equations	-	MgCl ₂ (s) + 6H ₂ O(l) →[Mg(H ₂ O) ₆] ²⁺ (aq) + 2Cl ⁽ aq)	AlCl ₃ (s) + 6H ₂ O(l) → [Al(H ₂ O) ₆] ³⁺ (aq) + 3Cl [*] (aq)	SiCl ₄ (I) + 2H ₂ O(I) → SiO ₂ (s) + 4HCl(g)	PCl ₃ (I) + 3H ₂ O(I) → H ₃ PO ₃ (aq) + 3HCl(g)	PCI ₅ (I) + 4H ₂ O(I) → H ₃ PO₄(aq) + 5HCl(g)	2S ₂ Cl ₂ (l) + 2H ₂ O(l) → 3S(s) + SO ₂ (aq) + 4HCl(g)

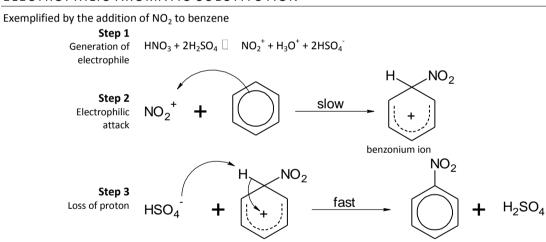
H2 Chemistry | Consolidated Notes

ORGANIC CHEMISTRY MECHANISM SUMMARY

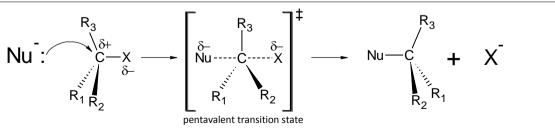
FREE RADICAL SUBSTITUTION (FRS)


Exemplified by the substitution of metha
Step 1: Intitiation
$CI-CI \xrightarrow{uv} CI \bullet + CI \bullet$

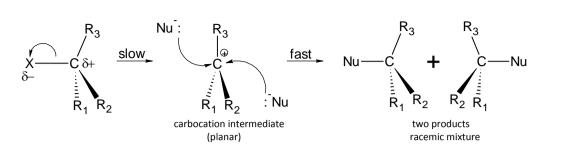
ane by chlorine
Step 2: Propagation
a) $CI \bullet + CH_4 \longrightarrow CH_3 \bullet + HCI$
b) $CH_3 \bullet + Cl_2 \rightarrow CH_3Cl + Cl \bullet$
Then (a), (b), (a), (b)


 $\begin{array}{l} \underline{\text{Step 3: Termination}}\\ a) & \text{Cl} \bullet + \text{Cl} \bullet \longrightarrow \text{Cl}_2\\ b) & \text{CH}_3 \bullet + \text{Cl} \bullet \longrightarrow \text{CH}_3\text{Cl}\\ c) & \text{CH}_3 \bullet + \text{CH}_3 \bullet \longrightarrow \text{CH}_3\text{CH}_3 \end{array}$

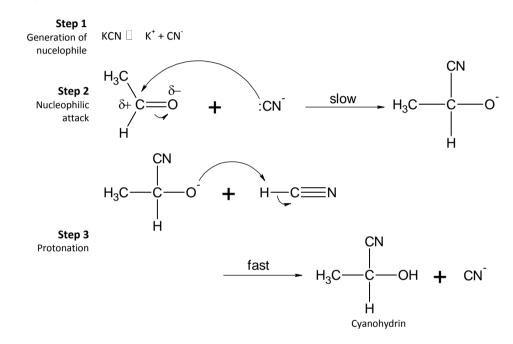
ELECTROPHILIC ADDITION


Exemplified by the addition of HBr to an alkene

ELECTROPHILIC AROMATIC SUBSTITUTION



NUCLEOPHILIC SUBSTITUTION – $S_N 2$ – ONE STEP


H2 Chemistry | Consolidated Notes

NUCLEOPHILIC SUBSTITUTION – $S_N 1 - TWO$ STEP

NUCLEOPHILIC ADDITION

Exemplified by the addition of CN⁻ to ethanal

H2 Chemistry | Consolidated Notes

BIOCHEMISTRY

AMINO ACIDS

Amino acids are zwitterionic - forms strong ionic bonds at isoelectric point (pl)

- Solubilities of amino acids are at a minimum at pl. Lattice energy is most exothermic at this point as the zwitterions experience the greatest ionic attraction
- Zwitterions have high melting points due to strong ionic bonds

Classification of amino acids

Туре	Nonpolar	Negatively charged	Positively charged	Uncharged
Example	Glycine (-H)	Aspartic acid	Lysine (-(CH ₂) ₄ NH ₂)	Serine (-CH ₂ OH)
(R group)	Alanine (-CH ₃)	(-CH ₂ COOH)		Cysteine (-CH ₂ SH)

Reactions of amino acids

Two important reactions to remember
Salt formation
$H_3N^+-R-COO^- + H^+ \rightarrow H_3N^+-CHR-COOH$
$H_3N^+-R-COO^- + OH^- \rightarrow H_2N-CHR-COO^- + H_2O$

<u>Peptide bond formation</u> H₃N⁺-R-COO⁻ + H₃N⁺-R'-COO⁻ → H₃N⁺-R-**CONH**-R[']-COO⁻ + H₂O peptide bond

Hydrolysis of peptides

Acidic hydrolysis	Basic hydrolysis	Enzymatic hydrolysis
-R-CONH-R'- — ^{H⁺, heat} →	R-CONH-R′ <u>OH</u> , heat →	May be catalyzed by enzymes like
-R-COOH + H ₃ N ⁺ -R'-	$-R-COO^{-} + H_2N-R'-$	trypsin, pepsin etc.

PROTEINS

The **primary structure** of a protein refers to the number and sequence of amino acids in a polypeptide chain.

E.g.: ala-gly-leu-tyr-his-ala-leu-phe

The **secondary structure** of a protein refers to the local spatial conformation of the polypeptide backbone, in the form of either α -helices or β -pleated sheets.

<u>α-helix</u>

- Right-hand screw
- NH group in each peptide link is hydrogen-bonded to the CO group of the fourth following peptide link
- 3.6 AAs per turn

- <u>β-pleated sheet</u>
 - Stabilized by hydrogen-bonds between CO and NH groups in adjacent strands
 - May be antiparallel or parallel
 - Side chains on successive AA residues appear on opposite sides of the sheet

The **tertiary structure** of a protein refers to its three-dimensional structure of the polypeptide.

- 1. Hydrogen bonding
 - a. Between polar side chains (-OH, -NH, =O, =NR groups)
- 2. van der Waals forces
 - a. Electrostatic interactions among permanent or induced dipoles
 - b. Hydrophobic interactions contributed by nonpolar side chains which cluster away from water to avoid destabilisation of side chains (a hydrophobic core is formed)
- 3. Ionic interactions
 - a. Between two oppositely charged side chains (e.g. Asp and Lys) usually groups that ionize in water
- 4. Disulphide bridges
 - a. Between cysteine residues with the thiol (-SH) side chain
 - b. $R-SH + HS-R' + [O] \rightarrow R-S-S-R + H_2O$

The **quaternary structure** of protein refers to the spatial arrangements and association of the polypeptide subunits of proteins.

- Haemoglobin as an example
 - o Formed from four polypeptide chains

H2 Chemistry | Consolidated Notes

DENATURATION OF PROTEINS

Denaturation refers to the disruption in the secondary, tertiary and quaternary structure of proteins by the breaking of the non-covalent (but including disulphide bridges) interactions that hold these structures in their native conformation.

Effect of Temperature

- Heating causes an increase in the thermal vibration of the molecule
- Hydrogen bonding is disrupted
- Proteins denature and thus unfold

Effect of pH

- If pH is lowered far below pI, the protein will only contain positive charges
- Like charges repel each other and cause the denaturation of proteins
- Likewise for high pH

Effect of Heavy Metal Ions

- Heavy metal ions (Pb²⁺, Cd²⁺, etc) are positively charged
- Compete with positively charged groups for attraction with negatively charged groups
- Also bond with –SH groups (especially Hg²⁺) and disrupt disulphide bridges
- Resident metal ions in certain proteins may also be displaced

ENZYMES

Enzymes are biological catalysts – they increase the rate of reaction without themselves being changed at the end of the reaction. They catalyze reactions by providing an alternate route of reaction with lower activation energies.

Characteristics

Specificity: only certain substrates are acted upon by enzymes, and only a single type of reaction takes place Large catalytic power: some enzymes can speed up reactions by a billion times

PHYSICAL & CHEMICAL PROPERTIES

ATOMIC STRUCTURE

Property	Explanation			
The 4s orbital is filled	The 4s orbital is at a lower energy level than the 3d orbital, following Aufbau's principle,			
before the 3d orbital	orbitals of lower energy are filled up first.			
Electrons are first lost	When the 3d orbital is filled, it descends to a lower energy level than than the 4s orbital,			
from the 4s orbital	causing the 4s orbital to be <u>further away from the nucleus</u> , enabling electrons to be lost from			
	the 4s orbital first			
Cr has one electron in its	Chromium has one electron in its 4s orbital to minimize electron-electron repulsion within the			
4s orbital	3d orbital			
Cu has one electron in its	Copper has one electron in its 4s orbital to form a <u>symmetrical charge distribution</u> around the			
4s orbital	centre, forming a <u>full metal centre</u>			
Subsequent IEs are	Subsequent atoms are being removed from a nuclei with an increasing positive charge,			
higher	making them more difficult to remove			
IE increases across a	Across a period, there is increasing nuclear charge, but approximately constant shielding			
period	effect from inner shell electrons, leading to an increase in effective nuclear charge (electrons			
	are harder to remove)			
1 st IE of Al < Mg	Al: $1s^22s^22p^63s^23p^1 \rightarrow Al^+: 1s^22s^22p^63s^2$ 3p electron is removed			
1 st IE of Be < B	Mg: $1s^22s^22p^63s^2 \rightarrow Mg^+$: $1s^22s^22p^63s^1$ 3s electron is removed			
2 nd IE of Si < Al	Less energy is required to remove a 3p electron compared to a 3s electron since the <u>3p</u>			
etc.	electron is higher in energy, it has a lower penetrating power and is thus more easily removed			
1 st IE of S < P	For S : removal of a paired 3p electron			
1 st IE of O < N	For P : removal of an unpaired 3p electron			
2 nd IE of CI < S	<u>Repulsion between the two paired 3p electrons</u> in S make it easier for one of the electrons to			
etc.	be lost, hence the IE of S is lower			
2 nd IE of Na >> Mg	$Na^+: 1s^22s^22p^6 \rightarrow Na^{2+}: 1s^22s^22p^5$ 2p electron is removed			
	$Mg^+: 1s^22s^22p^63s^1 \rightarrow Mg^{2+}: 1s^22s^22p^6$ 3s electron is removed			
	The electron removed form Na ^{$+$} is in <u>the 2nd principle quantum shell</u> , which experiences <u>much</u>			
	less shielding effect from inner-shell electrons, which outweighs the lower nuclear charge on			
	Na as compared to the electron removed from Mg ⁺ is in the 3^{rd} principle quantum shell			

Read Mr Wong's Chemical Bonding discussion at http://sg.geocities.com/tzeyang111777/chemistry/bonddis2.swf

H2 Chemistry | Consolidated Notes

ALKANES

Property	Explanation	
Non-polar	Difference in electronegativities of C and H atoms are negligible (id-id interactions)	
bp/mp increases with	A larger electron cloud is more easily polarized and id-id interactions become greater, and	
molecular size	since boiling involves the breaking of IMF, bp and mp increases with molecular size	
bp/mp decreases with	A branched isomer has a smaller surface area and hence a lower extent of IMF between its	
branching	molecules	
Insoluble in polar solvents, soluble in non-polar solvents		
Density increases with molecular size; less dense than water		
Unreactive	Non-polar and saturated and do not contain any region of high e ⁻ density	

Alkenes

Property	Explanation
Similar to alkanes	
cis- isomers have higher bps than trans- isomers	The cis- isomer is <u>polar</u> and has pd-pd as well as id-id interactions, while the trans- isomer has only id-id interactions
cis- isomers have lower mps than trans- isomers	trans- isomers pack better into a crystal lattice and have higher mps than cis- isomers

HALOGEN DERIVATIVES

Property	Explanation		
Less reactive than benzene (in	Highly electronegative halogen deactivates the ring		
ES)			
Ar-X less reactive to SN as	Partial double bond character in the arene C-X bond due to p-orbital overlap with the		
compared to R-X	□-cloud		
	The presence of the <u>e⁻rich ring</u> hinder nucleophilic attack		
Higher bp/mp than	The alkane is non-polar and has only id-id interactions, where R-X has a polar bond and		
corresponding alkane	hence pd-pd interactions. Also, the number of e is larger, increasing id-id interactions.		

HYDROXY COMPOUNDS

Acidity: The stability of the acid anion determines the acidity of a compound					
Ethanol	< Wa	iter	<	Phenol	
alkoxide ion is <u>destabilized</u> by the <u>positive inductive effect</u> of the <u>e</u> <u>donating alkyl groups</u> Effects of substituents	Neither destabilizing or stabilizing effects are present		The phenoxide ion is <u>stabilized</u> by the <u>delocalization of the negative charge</u> into the <u>benzene ring</u>		
Ethanol	Phenol				
e releasing groups on the hydroxyl carbo as it <u>intensifies the negative charg</u> <u>destabilizing the anion</u>	reduces the deloc	alization of the g, <u>destabilizing</u> t	<u>acidity</u> of phenol as it <u>negative</u> charge on the the anion; the opposite is		

CARBONYL COMPOUNDS

Property	Explanation	
Higher bp than corr alkane,	pd-pd interactions as compared the id-id interactions in alkanes	
lower bp than corr alcohol	lack of h-bonding when comparing with alcohols	
Solubility in water decreases as	Unable to form h-bonding with water. Higher carbonyl compounds have larger	
number of C increases; soluble	hydrophobic groups.	
in organic solvents		

H2 Chemistry | Consolidated Notes

CARBOXYLIC ACIDS AND DERIVATIVES

Property	Explanation
Higher bp than corr alkanes and alcohols	RCOOH form stronger intermolecular hydrogen bonds than alcohols because
	the <u>-OH group is more polarized</u> due to the presence of the e withdrawing -
	<u>C=O group</u>
bp increases as molecular size increases	Increase in the number of e strengthens id-id interactions
Lower RCOOH are soluble in water	See solubility in carbonyl compounds
More acidic than alcohols/phenols	The RCOO anion is resonance stabilized due to the delocalization of the
	negative charge over two highly electronegative O atoms
Effects of substituents	See effects of substituents in Alcohols
	K _a increases with number of e ⁻ withdrawing groups
	K _a increases with distance of e ⁻ withdrawing groups from –COOH

	Acyl chlorides	Esters	Amides
Boiling point	Unable to form h-bonding, and exp	Amides have a <u>NH₂ group</u> and can form	
	interactions and have lower boiling	<u>g points</u> than their parent	a <u>higher degree of h-bonding</u> , and
	carboxylic acids		usually have <u>higher boiling points</u> than
			their parent carboxylic acids
Solubility	Soluble Insoluble		Fairly soluble in water due to h-bolding
(non-polar	RCOCI hydrolyzes rapidly in		
solvents)	water to form RCOOH		
Solubility	Solubility decreases with size of hydrophobic group		Generally insoluble (lower amides are
(polar solvents)			soluble)

Ease of SN

RCOCI	> RCI	> ArCl
Highly polarized alpha-carbon as it is	Less polarized alpha-carbon as it is	Electron-rich benzene ring repels
bonded to two highly electronegative	only bonded to one electronegative	nucleophile
atoms	atom	
<u>sp² hybridized</u> C experiences <u>less steric</u>	<u>sp³ hybridized</u> C experiences <u>more</u>	Partial-double bond character makes
<u>hindrance</u> (trig-planar)	steric hindrances (tetra)	C-Cl bond harder to break

NITROGEN DERIVATIVES

Property	Explanation
Higher bp than corr alkanes,	O-H h-bond is stronger than N-H h-bond as O is more electronegative
lower bp than corr alcohols	
bp increases with molecular size	Increase in size of electron cloud increases polarizability resulting in greater IMF
Lower members are highly	h-bonding with water formed easily for both amines and amides; solubility decreases
soluble in water (max 5C in	in higher members due to greater hydrophobic nature (also, phenylamine)
amines)	
Amides are polar	The highly electronegative N is bonded to H, forming h-bonding
Tertiary amides have low bp	They do not form h-bonding with each other due to the absence of a N-H bond,
	however the form h-bonding with water and hydroxylic solvents
Amides are neutral	The lone pair on N id delocalized over the O-C-N moiety

Basicity of amines: The ability to donate the lone pair on N determines basicity

ArNH ₂	< RR'R"NH	<	NH ₃	<	RNH_2	<	$RR'NH_2$
The lone pair on N is	Tertiary amines have		Electron releasing R	groups i	ncrease basi	city as t	hey
delocalized into the	relatively low basicity due to		increase the electro	n densit	y of the lone	pair on	<u>N</u> , making
<u>benzene 🛛-cloud</u> , making it	steric hindrance from three		it so very big more a	vailable	to accept a p	oroton	
less available for dative	bulky R groups						
<u>bonding</u>							

Effect of substituents on ArNH₂: K_b decreases with e withdrawing substitutents, and vice versa

H2 Chemistry | Consolidated Notes

HALOGENS

Down group VII	Explanation
Volatility decreases	Boiling involves the overcoming <u>of id-id interactions</u> between the halogen molecules. The <u>size of the</u> <u>electron cloud increases</u> descending the group, and thus becomes <u>more polarizable</u> . Hence, boiling point increases.
Atomic and ionic radii increase Electronegativity decreases	Effective nuclear charge decreases. Both nuclear charge and shielding increase, but the latter to a more significant extent.
Oxidising power decreases	From standard electrode potential values
BDE decreases EXCEPT for F ₂	<u>Atomic size increases</u> due to decreasing effective nuclear charge. The orbitals are <u>less diffuse</u> , and the <u>orbital overlap</u> is consequently <u>less effective</u> . For F_2 : There is great <u>electrostatic repulsion</u> between the <u>lone pairs on the F atoms</u> in F_2 , leading to a <u>less effective orbital overlap</u> between the bonding orbitals.

REACTIONS

F ₂ oxidizes water	$2F_2(g) + 2H_2O \rightarrow 4HF(aq) + O_2(g)$
Cl ₂ oxidizes water	$Cl_2(g) + 2H_2O \leftrightarrow 2HOCl(aq) + HCl(g)$ 2HOCl \leftrightarrow 2HCl(aq) + $O_2(g)$
Halogens disproportionate in <u>cold</u> , aqueous alkalis to give <u>halide</u> and <u>halate (I) ions</u>	$X_2(g) + 2OH^{-}(aq) \rightarrow X^{-}(aq) + XO^{-}(aq) + H_2O(I)$
Halogens disproportionate in <u>hot</u> , aqueous alkalis to give <u>halide</u> and <u>halate (V) ions</u>	$X_2(g) + 6OH^{-}(aq) \rightarrow 5X^{-}(aq) + XO_3(aq) + H_2O(I)$
Halogens react with hydrogen to form hydrogen halides The vigour of reaction is dependent on the halogen's oxidising power	$X_2(g) + H_2(g) \rightarrow 2HX(g)$
Halate (I) ions disproportionate upon heating to give <u>halide</u> and <u>halate (V) ions</u>	$3XO^{-}(aq) \rightarrow 2X^{-}(aq) + XO_{3}^{-}(aq)$

HYDROGEN HALIDES

Down group VII	Explanation				
Thermal stability	Down Group VII, the valence orbitals become more diffuse, resulting in less effective orbital				
decreases	overlap, hence a <u>weaker H-X bond</u> is formed,				
Acidity of increases	Acidity depends on HX bond strength. Since H-X <u>bond strength decreases</u> down the group, <u>acidity</u> <u>increases</u> down the group.				

REACTIONS

HBr and HI are oxidised when heated with			
concentrated H ₂ SO ₄			
The reactions differ as I [°] is a stronge reducing agent			

 $2HBr(g) + H_2SO_4(I) \rightarrow Br_2(g) + SO_2(g) + 2H_2O(I)$ $8HI(g) + H_2SO_4(I) \rightarrow 4I_2(g) + H_2S(g) + 4H_2O(I)$

METAL HALIDES

	Colour	Excess NH ₃ (aq)	conc NH₃(aq)	Effect of sunlight	Why AgCl is soluble in NH ₃ (aq) but not	
AgCl	White	Soluble*	Soluble	Turns grey	AgBr/AgI: The K_{sp} values of AgBr/AgI are extremely low. Even when $[Ag^{+}]$ is lowered when NH ₃ is added, the IP still exceeds K_{sp}	
AgBr	Cream	Insoluble*	Soluble	Turns yellow		
Agl	Yellow	Insoluble*	Insoluble	No visible change	such that AgBr/Agl remain insoluble.	

REACTIONS

Heating MX in concentrated H ₂ SO ₄ produce their hydrogen halides. HBr and HI are further oxidised. See above.	$NaX(s) + H_2SO_4(I) \rightarrow NaHSO_4(s) + HX(g)$
HX can be prepared in situ by reacting MX with concentrated H_3PO_4	$NaX(s) + H_3PO_4(I) \rightarrow NaH_2PO_4(s) + HX(g)$
HX can be prepared in situ by reacting X_2 with red phosphorus	$P_4(s) + 6X_2 → 4PX_3$ $PX_3 + 3H_2O(I) → 3HX(g) + H_3PO_3(aq)$

DEFINITIONS

ORGANIC CHEMISTRY

Enantiomers

Stereoisomers which rotate plane-polarized light in opposite directions

Racemic mixture

A mixture of equal proportions of enantiomers where there is no net optical activity

Meso compound

An optically inactive compound with a plane of symmetry and more than one chiral center.

Electrophile

Electron-deficient species

Nucleophile

Electron-rich species

ENERGETICS

Hess' Law states that the enthalpy change of a reaction is determined by the initial and final state of the system and is independent of the pathway taken.

Standard enthalpy change of reaction - ΔH_{r}^{Θ}

The heat change when molar quantities of reactants as specified by the chemical equation react to form products at standard conditions

Standard enthalpy change of formation - ΔH_{f}^{o}

The heat change when 1 mole of a pure compound in a specified state is formed from its constituent elements in their standard states at standard conditions.

 $\begin{array}{c} H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I) \\ \Delta H_r^{\Theta} = \Delta H_f^{\Theta} [H_2O(I)] \end{array}$

Standard enthalpy change of combustion - ΔH_{c}^{θ}

The heat evolved when 1 mole of a substance is completely burned in oxygen at standard conditions. $C(s) + O_2(g) \rightarrow CO_2(g)$

s) + O₂(g)
$$\rightarrow$$
 CO₂(g)
 $\Delta H_r^{\Theta} = \Delta H_c^{\Theta} [C(s)]$

Standard enthalpy change of neutralization - ΔH^{Θ}_{neut}

The heat change when an amount of acid neutralizes a base to form 1 mole of water (in dilute aqueous solution) at standard conditions.

$$\begin{array}{rl} \mathsf{KOH}(\mathsf{aq}) \ + \ \mathsf{HNO}_3(\mathsf{aq}) \ \rightarrow \ \mathsf{KNO}_3(\mathsf{aq}) \ + \ \mathsf{H}_2\mathsf{O}(\mathsf{I}) \\ & \Delta \mathsf{H}_{\ r}^{\Theta=} \Delta \mathsf{H}_{\ \mathsf{neut}}^{\Theta} \end{array}$$

Standard enthalpy change of atomization - ΔH^{Θ}_{atom}

The heat change when 1 mole of atoms in the gas phase is formed from the element in the defined physical state under standard conditions.

$${}^{1/2}H_2(g) \rightarrow H(g) \\ \Delta H^{\Theta}_{r} {}^{=} \Delta H^{\Theta}_{atom} [H_2(g)]$$

Standard enthalpy change of solution - $\Delta H^{\theta}_{\mbox{ soln}}$

The heat change when 1 mole of solute is completely dissolved in enough solvent so that no further heat

change takes place on adding more solvent (infinite dilution) at standard conditions.

 $\begin{array}{l} \mathsf{CuSO}_4(\mathsf{s}) \twoheadrightarrow \mathsf{Cu}^{2^+}(\mathsf{aq}) + \mathsf{SO}_4^{2^-}(\mathsf{aq}) \\ \Delta \mathsf{H}^{\Theta}{}_r^{-} \Delta \mathsf{H}^{\Theta}{}_{\mathsf{soln}} \left[\mathsf{CuSO}_4(\mathsf{s})\right] \end{array}$

Standard enthalpy change of hydration - ΔH_{hvd}^{Θ}

The heat energy evolved when 1 mole of the gaseous ion is dissolved in a large amount of water at standard conditions

 $Na^{+}(g) \rightarrow Na^{+}(aq)$ $\Delta H^{\Theta}_{r}{}^{=}\Delta H^{\Theta}_{hvd} [Na]$

Bond energy - BE

The average energy absorbed when 1 mole of X-Y bonds are broken in gaseous state

 $CH_4(g) \rightarrow C(g) + 4H(g)$ $\Delta H_r^{\circ} = 4BE [C-H]$

Bond dissociation energy - BDE

The energy required to break 1 mole of that particular X-Y bond in a particular compound in gaseous state. $CH_4(g) \rightarrow CH_3(g) + H(g)$

 $\Delta H^{\Theta}_{r} = BDE [C-H]$

First ionization energy - 1st IE

The energy required to remove 1 mole of electrons from 1 mole of gaseous atoms in the ground state to form 1 mole of gaseous unipositive charged cations.

Na(g) \rightarrow Na⁺(g) + e⁻ H^{θ}_r⁼ 1st IE [Na]

Second ionization energy - 2nd IE

The energy required to remove 1 mole of electrons from 1 mole of gaseous $X^{\rm +}$ ions to form 1 mole of gaseous $X^{\rm 2+}$ charged cations.

⁺(g) → Na²⁺(g) + e⁻
H^{$$\theta$$}_r = 2nd IE [Na]

First electron affinity – 1st EA

Na

The energy change when 1 mole of electrons are added to 1 mole of atoms in the gaseous state to form 1 mole of gaseous X^{-} ions

$$CI(g) + e^{-} \rightarrow CI^{-}(g)$$

 $H^{\Theta}_{r} = 1^{st} EA [CI]$

Second electron affinity – 2nd EA

The energy change when 1 mole of electrons are added to 1 mole of gaseous X⁻ ions to form 1 mole of gaseous X²⁻ ions $C_{1}^{(r)} + c_{2}^{-} \rightarrow C_{2}^{(2)}$

$$Cl^{-}(g) + e^{-} \rightarrow Cl^{2-}(g)$$

 $H^{\theta}_{r} = 2^{nd} EA [Cl]$

Lattice energy - |LE|

The heat change when 1 mole of pure solid ionic compound is formed from its constituent gaseous ions under standard conditions

 $Mg^{2+}(g) + 2Cl^{-}(g) \rightarrow MgCl_{2}(s)$ $H^{\theta}_{r} = |LE| [MgCl_{2}(s)]$

H2 Chemistry | Consolidated Notes

KINETICS

Rate Equation

A mathematical equation that shows how the rate of reaction is dependent on the concentrations of the reactants. It relates the rate of reaction to the concentrations of the reactants raised to the appropriate power.

Rate constant - k

A proportionality constant in the rate equation of the reaction

Order of reaction w.r.t. a reactant

The power to which the concentration of that reagent is raised in the rate equation

Overall order or reaction

The sum of all powers to which concentrations of reactants are raised in the rate equation

Half-life – $t_{\frac{1}{2}}$

The time required for the concentration of a limiting reagent to decrease to half of its initial concentration

CHEMICAL EQUILIBRIA

Reversible reaction

Reactions that take place in both directions at comparable rates

Static equilibrium

A state in which there is no change in both macroscopic and microscopic properties in a system

Dynamic equilibrium

A reversible reaction in which the rate of the forward and backward reactions are equal and nonzero.

Degree of dissociation – α

The fraction of a reactant that has dissociated at a particular temperature

Apparent molecular mass – M_{app}

The weighted average of the relative molecular masses of all gases present in equilibrium

Le Chatelier's Principle states that if a system in equilibrium is subjected to a change which disturbs the equilibrium, the system responds in such a way as to counteract the effect of the change.

IONIC EQUILBRIA

Brønsted-Lowry theory of acids and bases

A acid is a proton donor. A base is a proton acceptor. An acid-base reaction involves the transfer of a proton from an acid to a base.

Strong acid

An acid which undergoes complete dissociation in aqueous solution

Weak acid

An acid which undergoes partial dissociation in aqueous solution

Strong base

A base which undergoes complete ionization in aqueous solution

Weak base

A base which undergoes partial ionization in aqueous solution

Degree of ionization – α

The fraction of molecules which is ionized at equilibrium

Buffer solution

A solution which is able to resist a change in pH upon the addition of a small amount of acid or base

E L E C T R O C H E M I S T R Y Standard electrode potential $-E^{\Theta}$

The potential of a half-cell relative to a standard hydrogen half-cell under standard conditions

Standard cell potential – E_{cell}^{Θ}

The potential difference between two half-cells under standard conditions

TRANSITION METALS

Transition metal

A metal which forms one or more stable ions which have incompletely filled d-subshells

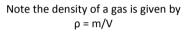
Complex

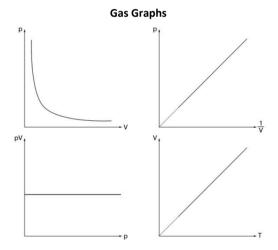
A complex contains a central metal ion linked to one or more surrounding ligands.

Ligand

An anion or a molecule which contains at least one atom bearing one lone pair of electrons which can be donated into the low-lying vacant orbital of the central metal atom/ion forming a dative bond.


THINGS TO NOTE


GASES


Deviation from ideality occurs under

- High pressure intermolecular distances become less negligible
- Low temperature molecules move more slowly, IMF becomes less negligible
- When a gas has strong intermolecular forces e.g. h-bonding in NH₃
- When a gas molecule has a large size e.g. Cl₂

For memorizers, deviation as follows: Cl₂>NH₃>HCl>CO₂>O₂>N₂>H₂>H

The **partial pressure** of a gas is its **mole fraction** times its **total pressure**

The mole fraction is given by ngas/ntotal

STEREOISOMERISM

Carbons that are definitely not chiral			
sp ³ hybridized:	triple bonded		
sp ² hybridized:	double bonded or		
	part of a benzene ring		

n chiral centres give 2^n optical isomers

ORGANIC CHEMISTRY

n = C - ½(H + X - N) + 1

Note the difference between **benzyl** and **phenyl**

- Phenyl is just a [−]C₆H₅ group
- Benzyl has a CH₂ group attached to C₆H₅
- A cyclic ester may form from a hydroxy-acid

ARENES

Reactivity of attached groups and how they direct.

Activiating	More reactive	
Amine	-NH ₂	
Hydroxy	-OH	ing
Alkyl	(CH ₂) _n CH ₃	2,4 Directing
Aryl	C ₆ H ₅	Dir
reference!	н	2,4
Halogen	-Cl, -Br, -I	
Aldehyde	-CHO	
Ester	-COO-	ы
Carboxylic acid	-COOH	directing
Ketone	-CO-	dire
Nitrile	-CN	30
Nitrite	-NO ₂	
Deactivating	Less reactive	

DISTINGUISHING TESTS

Remember to give the following

- 1. Reagents and conditions
- 2. Observations
- 3. Equations

MECHANISM DRAWING

- 1. Name the mechanism e.g. "electrophilic addition"
- 2. Show the **polarization** of atoms e.g. $Br^{\delta-}Br^{\delta-}$
- 3. Draw arrows showing flow of electrons
- 4. Label slow/fast steps
- Except in FRS and SN_2
- 5. Number your steps

CHEMICAL BONDING

Strong covalent bonds

- Have multiple bonds
- Have short bond length and more effective orbital overlap (small molecular size)
- Are more polar have ionic character
- Strong ionic bonds
 - Have high lattice energy
 - Large charges
 - o Small radii